- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Independent Asynchronous Inputs and Outputs
- Read and Write Operations Can Be Synchronized to Independent System Clocks
- Programmable Almost-Full/Almost-Empty Flag
- Pin-to-Pin Compatible With SN74ACT7881 and SN74ACT7811
- Input-Ready, Output-Ready, and Half-Full Flags
- Cascadable in Word Width and/or Word Depth (See Application Information)
- Fast Access Times of 11 ns With a 50-pF Load
- High Output Drive for Direct Bus Interface
- Package Options Include 68-Pin Plastic Leaded Chip Carriers (FN) or 80-Pin Shrink Quad Flat (PN) Package

NC - No internal connection

description

A FIFO memory is a storage device that allows data to be written into and read from its array at independent data rates. The SN74ACT7882 is organized as 2048 bits deep $\times 18$ bits wide. The SN74ACT7882 processes data at rates up to 67 MHz and access times of 11 ns in a bit-parallel format. Data outputs are noninverting with respect to the data inputs. Expansion is accomplished easily in both word width and word depth.
The SN74ACT7882 has normal input-bus to output-bus asynchronous operation. The special enable circuitry adds the ability to synchronize independent reads and writes to their respective system clocks.

The SN74ACT7882 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the FN package.

functional block diagram

Terminal Functions ${ }^{\dagger}$

TERMINAL		1/0	DESCRIPTION
NAME	NO.		
AF/AE	33	O	Almost-full/almost-empty flag. The AF/AE boundary is defined by the AF/AE offset value (X). This value can be programmed during reset or the default value of 256 can be used. AF/AE is high when the number of words in memory is less than or equal to X . AF/AE also is high when the number of words in memory is greater than or equal to $(2048-X)$. Programming the AF/AE offset value (X) is accomplished during a reset cycle. The AF/AE offset value (X) is either user-defined or the default value of $X=256$. The procedure to program $A F / A E$ is as follows: User-defined X Step 1: Take $\overline{\mathrm{DAF}}$ from high to low. The high-to-low transition of $\overline{\mathrm{DAF}}$ input stores the binary value on the data inputs as X. The following bits are used, listed from most significant bit to least significant bit D9-D0. Step 2: If $\overline{\mathrm{RESET}}$ is not already low, take $\overline{\mathrm{RESET}}$ low. Step 3: With $\overline{\text { DAF }}$ held low, take RESET high. This defines the AF/AE using X. NOTE: To retain the current (X) offset, keep $\overline{\mathrm{DAF}}$ low during subsequent reset cycles. Default X To redefine AF/AE using the default value of $X=256$, hold $\overline{D A F}$ high during the reset cycle.
$\overline{\text { DAF }}$	27	1	Define almost-full. The high-to-low transition of $\overline{\mathrm{DAF}}$ stores the binary value of data inputs as the AF/AE offset value (X). With $\overline{\mathrm{DAF}}$ held low, a $\overline{\text { RESET }}$ cycle defines the AF/AE flag using X.
D0-D17	$\begin{gathered} \hline 26-19,17, \\ 15-7 \end{gathered}$	1	Data inputs for 18-bit-wide data to be stored in the memory. A high-to-low transition on $\overline{\mathrm{DAF}}$ captures data for the almost-empty/almost-full offset (X) from D9-D0.
HF	36	O	Half-full flag. HF is high when the FIFO contains 1024 or more words and is low when the number of words in memory is less than half the depth of the FIFO.
IR	35	O	Input-ready flag. IR is high when the FIFO is not full and low when the device is full. During reset, IR is driven low on the rising edge of the second WRTCLK pulse. IR then is driven high on the rising edge of the second WRTCLK pulse after RESET goes high. After the FIFO is filled and IR is driven low, IR is driven high on the second WRTCLK pulse after the first valid read.
OE	2	1	Output enable. The Q0-Q17 outputs are in the high-impedance state when OE is low. OE must be high before the rising edge of RDCLK to read a word from memory.
OR	66	O	Output-ready flag. OR is high when the FIFO is not empty and low when it is empty. During reset, OR is set low on the rising edge of the third RDCLK pulse. OR is set high on the rising edge of the third RDCLK pulse to occur after the first word is written into the FIFO. OR is set low on the rising edge of the first RDCLK pulse after the last word is read.
Q0-Q17	$\begin{gathered} \hline 38-39,41-42, \\ 44,46-47, \\ 49-50,52-53, \\ 55-56,58-59, \\ 61,63-64 \end{gathered}$	O	Data out. The first data word to be loaded into the FIFO is moved to Q0-Q17 on the rising edge of the third RDCLK pulse to occur after the first valid write. RDEN1 and RDEN2 do not affect this operation. Following data is unloaded on the rising edge of RDCLK when RDEN1, RDEN2, OE, and OR are high.
RDCLK	5	1	Read clock. Data is read out of memory on the low-to-high transition at RDCLK if OR, OE, and RDEN1 and RDEN2 are high. RDCLK is a free-running clock and functions as the synchronizing clock for all data transfers out of the FIFO. OR also is driven synchronously with respect to RDCLK.
$\begin{aligned} & \text { RDEN1 } \\ & \text { RDEN2 } \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	1	Read enable. RDEN1 and RDEN2 must be high before a rising edge on RDCLK to read a word out of memory. RDEN1 and RDEN2 are not used to read the first word stored in memory.
$\overline{\text { RESET }}$	1	1	Reset. A reset is accomplished by taking $\overline{\text { RESET }}$ low and generating a minimum of four RDCLK and WRTCLK cycles. This ensures that the internal read and write pointers are reset and that OR, HF, and IR are low, and AF/AE is high. The FIFO must be reset upon power up. With DAF at a low level, a low pulse on $\overline{\text { RESET }}$ defines AF/AE using the AF/AE offset value (X), where X is the value previously stored. $\overline{\text { DAF }}$ held high during a $\overline{R E S E T}$ cycle defines the AF/AE flag using the default value of $X=256$.
WRTCLK	29	1	Write clock. Data is written into memory on a low-to-high transition of WRTCLK if IR, WRTEN1, and WRTEN2 are high. WRTCLK is a free-running clock and functions as the synchronizing clock for all data transfers into the FIFO. IR also is driven synchronously with respect to WRTCLK.
WRTEN1 WRTEN2	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	1	Write enable. WRTEN1 and WRTEN2 must be high before a rising edge on WRTCLK for a word to be written into memory. WRTEN1 and WRTEN2 do not affect the storage of the AF/AE offset value (X).

\dagger Terminals listed are for the FN package.

Figure 1. Reset Cycle: Define AF/AE Using a Programmed Value of X

Figure 2. Reset Cycle: Define AF/AE Using the Default Value

DATA-WORD NUMBERS FOR FLAG TRANSITIONS

TRANSITION WORD		
A	B	C
W1025	$\mathrm{W}(2049-\mathrm{X})$	W 20495

Figure 3. Write

DATA-WORD NUMBERS FOR FLAG TRANSITIONS

TRANSITION WORD						
A	B	C	D	E	F	
W 1025	W 1030	$\mathrm{~W}(2048-\mathrm{X})$	$\mathrm{W}(2049-\mathrm{X})$	W 2048	W 2049	

Figure 4. Read

absolute maximum ratings over operating free-air temperature range \dagger

Voltage range applied to a disabled 3 -state output ... 0.5 V to 5.5 V
Package thermal impedance, θ_{JA} (see Note 1): FN package . 39 $39^{\circ} \mathrm{C} / \mathrm{W}$
PN package . $62^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions

		MIN	MAX	UNIT
V_{CC}	Supply voltage	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8	V
${ }^{\text {IOH }}$	High-level output current		-8	mA
$\mathrm{I}_{\text {OL }}$	Low-level output current		16	mA
T_{A}	Operating free-air temperature	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP\#	MAX	UNIT
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-8 \mathrm{~mA}$	2.4			V
V OL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=16 \mathrm{~mA}$			0.5	V
I	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0			± 5	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0			± 5	$\mu \mathrm{A}$
Icc§	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or 0				400	$\mu \mathrm{A}$
	One input at 3.4 V ,	Other inputs at V_{CC} or GND			1	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		4		pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		8		pF

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ I CC is tested with outputs open.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Figures 1 through 5)

\dagger To permit the clock pulse to be utilized for reset purposes
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 5)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	'ACT7882-15		'ACT7882-20		'ACT7882-30		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	WRTCLK or RDCLK		67		50		33.4		MHz
$t_{\text {pd }}$	RDCLK \uparrow	Any Q	3	12	3	13	3	18	ns
tpd^{\ddagger}	RDCLK \uparrow	Any Q							ns
$t_{\text {pd }}$	WRTCLK \uparrow	IR	2	8	2	9.5	2	12	
	RDCLK \uparrow	OR	2	8	2	9.5	2	12	
	WRTCLK \uparrow	AF/AE	6	17	6	19	6	22	
	RDCLK \uparrow		6	17	6	19	6	22	
tPLH	WRTCLK \uparrow	HF	6	14	6	17	6	21	ns
tPHL	RDCLK \uparrow	HF	6	14	6	17	6	21	ns
tPLH	$\overline{\text { RESET }} \downarrow$	AF/AE	3	12	3	17	3	21	ns
tPHL	$\overline{\text { RESET }} \downarrow$	HF	3	14	3	19	3	23	ns
ten	OE	Any Q	2	9	2	11	2	11	ns
$\mathrm{t}_{\text {dis }}$	OE	Any Q	2	10	2	14	2	14	ns

\ddagger This parameter is measured with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (see Figure 6).
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT	
C_{pd}	Power dissipation capacitance per 1 K bits	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{f}=5 \mathrm{MHz}$	65	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

PARAMETER		S1
ten	tPZH	Open
	tPZL	Closed
${ }^{\text {dis }}$	tPHZ	Open
	tpLZ	Closed
${ }^{\text {tpd }}$	tPLH	Open
	tPHL	Open

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTE A: C_{L} includes probe and jig capacitance.
Figure 5. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 6

POWER-DISSIPATION CAPACITANCE
vs

Figure 7

APPLICATION INFORMATION

expanding the SN74ACT7882

The SN74ACT7882 is expandable in both word width and word depth. Word-depth expansion is accomplished by connecting the devices in series such that data flows through each device in the chain. Figure 8 shows two SN74ACT7882 devices configured for depth expansion. The common clock between the devices can be tied to either the write clock (WRTCLK) of the first device or the read clock (RDCLK) of the last device. The output-ready (OR) flag of the previous device and the input-ready (IR) flag of the next device maintain data flow to the last device in the chain whenever space is available.
Figure 9 is an example of two SN74ACT7882 devices in word-width expansion. Width expansion is accomplished by simply connecting all common control signals between the devices and creating composite IR and OR signals. The almost-full/almost-empty (AF/AE) flag and half-full (HF) flag can be sampled from any one device. Depth expansion and width expansion can be used together.

Figure 8. Word-Depth Expansion: 4096×18 Bits

Figure 9. Word-Width Expansion: 2048×36 Bits

PACKAGING INFORMATION

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74ACT7882-15FN | ACTIVE | PLCC | FN | 68 | 18 |
 no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| SN74ACT7882-15PN | ACTIVE | LQFP | PN | 80 | 119 |
 no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| SN74ACT7882-20FN | ACTIVE | PLCC | FN | 68 | 18 |
 no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterface.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

